关于“php二分查找原理”的问题,小编就整理了【4】个相关介绍“php二分查找原理”的解答:
php常用算法和时间复杂度?按数量级递增排列,常见的时间复杂度有:常数阶O(1),对数阶O(log2n),线性阶O(n),线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3)
复制代码 代码如下:
//二分查找O(log2n)
function erfen($a,$l,$h,$f){
if($l >$h){ return false;}
$m = intval(($l+$h)/2);
if ($a[$m] == $f){
return $m;
}elseif ($f < $a[$m]){
return erfen($a, $l, $m-1, $f);
}else{
return erfen($a, $m+1, $h, $f);
}
}
$a = array(1,12,23,67,88,100);
var_dump(erfen($a,0,5,1));
//遍历树O(log2n)
function bianli($p){
$a = array();
foreach (glob($p.'/*') as $f){
if(is_dir($f)){
$a = array_merge($a,bianli($f));
}else{
$a[] = $f;
查找算法有几种?一、顺序查找 条件:无序或有序队列。 原理:按顺序比较每个元素,直到找到关键字为止。 时间复杂度:O(n)二、二分查找(折半查找) 条件:有序数组 原理:查找过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束; 如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。 如果在某一步骤数组为空,则代表找不到。 这种搜索算法每一次比较都使搜索范围缩小一半。 时间复杂度:O(logn)三、哈希表(散列表) 条件:先创建哈希表(散列表) 原理:根据键值方式(Key value)进行查找,通过散列函数,定位数据元素。 时间复杂度:几乎是O(1),取决于产生冲突的多少。
二分法查找的原理是什么?根据二分法原理求方程f(x)=0的根得到的程序:一般地,对于函数f(x),如果存在实数c,当x=c时,若f(c)=0,那么把x=c叫做函数f(x)的零点,解方程即要求f(x)的所有零点. 假定f(x)在区间[a,b]上连续,先找到a、b使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f[ a+b 2 ],然后重复此步骤,利用此知识对选项进行判断得出, 故根据二分法原理求x 2 -2=0的解得到的程序框图可称为程序流程图. 故选A.
二分查找法的基本思想和前提是什么?适用的前提条件:
1. 存储在数组中(例如一维数组)
2. 数组元素为有序(例如升序)查找的基本思想:折半查找,设查找的元素为value value与中间元素(middle = left + (right -left) / 2这样做的好处防止中间元素出现越界)比较,若比中间值小则查找范围在middle + 1继续查找,若比中间值大则查找范围在middle -1,若与中间值相等则查找结束索引元素为value = middle。
到此,以上就是小编对于“php二分查找原理”的问题就介绍到这了,希望介绍关于“php二分查找原理”的【4】点解答对大家有用。